

ALMA for VLBI

Robert Laing, ESO

+

Outline

- ALMA numbers and update
- Multifrequency observing with ALMA
- ALMA and VLBI
- ALMA Development Strategy

ALMA Numbers

- Aperture synthesis array optimised for wavelengths of 1cm 0.3mm (35 – 950 GHz)
- High, dry site, Chajnantor Plateau, Chile (5000m)
- 54 12m + 12 7m antennas
- Baselines from ~15m to 16km.
- **Resolution**/ arcsec $\approx 0.2(\lambda/mm)/(max baseline/km)$ 5 mas for highest frequency/longest baseline
- Field of view / arcsec \approx 17 (λ /mm) [12m dish]
- Sensitive, wide-band (currently 8 GHz) receivers; full polarization
- Flexible digital correlator giving wide range of spectral resolutions.
- Software

Keys to sub-mm observing

- Site
- Antennas
- LO distribution
- Sensitive SIS receivers
- Phase correction
 - Water-vapour radiometers
 - Fast phase calibration cycle
 - Band-to-band phase transfer
 - Self-calibration

ALMA Early Science

- Cycles 0, 1 and 2 complete
- 30-70% of total number of antennas available; baselines up to 3 km
- Already the most powerful sub-mm observatory
- Enormous user pressure: oversubscribed 9x in time
- Cycle 3: 1582 proposals (41% from EU)
- 60% sub-mm (Bands 7-9)

ALMA Science Output (September 21)

- 275 refereed publications as of September 21
- 72% of Cycle 0 projects resulted in at least 1 publication
- ~6% Nature/Science
- Wide range of science

+ES+ © +

Coming shortly: Cycle 4 Goals

- Improved spectral scans
- Line IQUV
- mmVLBI at 1 and 3mm
- Solar modes at 1 and 3mm
- On-the-fly interferometry
- Technical improvements
 - ACA correlator linearity
 - 90 deg Walsh switching
 - Sideband separation Bands 9 and 10 (DSB)
 - Full baseline range
 - Subarrays
 - Improved polarization capabilities

Multifrequency observations with ALMA: frequency switching

- Frequency switching either within a band or to another band on standby is specified to happen in <1.5s
 - Currently 3-4s in practice
 - Restrictions set by the need to pre-tune laser synthesizers
 - One band operational and up to two in standby (may increase)
- Use in practice: band-to-band transfer (related to frequency phase referencing)
 - Used for complex gain calibration when there is no nearby calibrator at the (usually high) observing frequency
 - Requires a measurement of the relative complex gains in 2 bands on a bright calibrator
 - Various options, dependent on conditions, locations and flux densities of calibrators, e.g. for a Band 9 observation:
 - calibrate and observe target in B9 (best in very good conditions)
 - calibrate in B6; observe target in B9 (moderate extrapolation; fewer calibrators than B3)
 - calibrate in B3; observe target in B9 (large extrapolation; many more calibrators available)
 - more calibrators than we thought; close calibrator better than faster switching
- Troposphere is essentially non-dispersive
 - $-\,$ but there are deviations, e.g. around the 183 and 327 GHz water lines
 - atmospheric models (ATM)

Multifrequency observations with ALMA: Subarrays

- 4 independently-tunable subarrays
 - Main array + ACA
 - Software currently being tested
 - In principle up to 6 subarrays (= number of laser synthesizers)
 - One phased sum
- Strictly simultaneous observations
 - Possible using different subarrays
 - In principle, can use paired antennas observing at different frequencies to correct phase (CARMA C-PACS; Perez et al. 2010).

Relative Declination (mas)

0.05

0.05

ALMA for VLBI: Science Drivers

- Imaging a black hole event horizon
- Testing GR
- Jet formation
- Masers (SiO, water, ...)
 - astrometry, distance measurement
 - black hole dynamics,
 - AGB stars
- Pulsars near the Galactic Centre
- Extragalactic absorption lines
 - Change of fundamental constants with time

M87 simulation (Lu et al. 2014) (a) MODEL (b) FULL ARRAY (c) W/D ALMA (d) W/O LMT (e) W/O GLT 0.4 0.2 0 -0.2 -0.4 Relative R.A. (mas)

Fish et al. (2013) Tilanus et al. (2014)

Phased ALMA with 50 antennas is the equivalent of an 85 m single dish on an excellent site

(u,v) coverage

5

ĵ,

Dictionary

- ALMA Phasing Project
 - Hardware and software to use ALMA as a phased array
 - Led by MIT/Haystack, with NRAO; MPIfR and OSO in Europe; ASIAA, NAOJ
 - Majority funding from NSF + in-kind contributions
- Event Horizon Telescope Collaboration
 - Collaboration for VLBI at 230 (and 345?) GHz
 - Prime targets are Sgr A* event horizon and the M87 jet
 - New receivers for existing telescopes (NSF+)
- BlackHoleCam
 - ERC synergy grant
 - Black hole imaging + pulsars + theory
- Infrastructure for VLBI at (sub-)mm wavelengths
 - Open facility for VLBI at wavelengths of 7mm or below.
 - GMVA
 - HSA

APP Block Diagram

APP: Technical Detail

- H maser frequency standard
- Mark 6 recorder
 - Located at 2900m site; optical fibre link from AOS
 - Up to 16 Gbit/s (4 GHz bandwidth; 2 polarizations; 2-bit sampling) upgrade to 32 Gbit/s possible in principle.
 - 512 MHz/2 Gbit/s for compatibility with VLBA
- Correlator upgrade
 - Phased sum
 - Phasing interface cards
- Software
 - Control
 - Phase solver
 - Polarization conversion (ALMA uses linearly polarized feeds; others circular)
- Frequencies
 - In principle, any ALMA band, but
 - Concentrate initially on Bands 3 and 6 (84-116 and 211-275 GHz)

ALMA Phasing Project - status

- H maser installed and in operation as ALMA frequency standard
- APP hardware accepted
- Most software delivered
- Baseline correlator phased with high efficiency (40 antennas, Band 3, >99%)
- Fringes obtained in "local VLBI" (phased ALMA APEX); Jan 2015
- On-line water vapour radiometer corrections demonstrated
- Tests on intercontinental baselines at 3 and 1mm: ongoing
- Extensive ongoing work to provide "ALMA standard" equipment at other telescopes (e.g. SPT, LMT)
- Plan is to be ready for VLBI science observing by Dec 2015: the technical go/no-go decision date for ALMA Cycle 4

ALMA in VLBI Networks

- Principles of ALMA participation in VLBI
 - ALMA will only participate in open-access VLBI networks
 - VLBI proposals will be assessed in competition with other ALMA proposals
 - ALMA will potentially be available to observe in VLBI mode during 2-3 sessions of a few days each per cycle – times agreed in advance
 - ALMA and VLBI data products will become public after some proprietary period
- Proposed model for ALMA in Cycle 4 (Oct 2016 Sept 2017)
 - ALMA joins the GMVA for (a subset of) observations at 3mm
 - Ad hoc network for 1mm observations negotiations in progress
 - Decision on Cycle 4 model at November ALMA Board Meeting

Near/mid-term Development Strategy

- Top priority: complete commissioning of rebaselined ALMA trilateral programme
 - Full polarization, single dish, observing efficiency, solar modes
- Restore capability lost in descopes before 2005
 - mmVLBI; Bands 1, 2, 5; subarrays; data rate
 - whenever possible, tighten specifications, use new technology
- Studies aimed at a major upgrade of ALMA by 2030
 - Increase bandwidth to at least 16 GHz/polarization
 - Receivers, digital electronics, correlator, sotfware
 - Longer baselines?
 - Focal plane arrays?

True multifrequency receivers could form part of this plan. Probably most effective to combine low+high frequency for calibration, but easiest to have two very high frequencies.

Ongoing development (1)

- Band 5
 - 163-211 GHz
 - Production in progress (NOVA/GARD/NRAO)
 - 8 cartridges integrated and tested; completion expected 2017
 - Performance well within specification
- Band 1
 - Lowest frequency band for ALMA: 35 50(52) GHz
 - 8 GHz IF bandwidth
 - LNA technology, SSB
 - $T_{SSB} < 25K$ (80%), <32K (full band)
 - Prototype under construction by ASIAA
 - Full production proposal after successful CDR
- Band 2
 - 67-90 GHz
 - Prototype being built at NRAO
 - European Development Study Band 2+3 (67-116 GHz) INAF Arcetri/Bologna; Manchester, RAL, ESO

Ongoing development (2)

- Search for millisecond pulsars near Galactic Centre
- Optimum frequency?
- Commensal with VLBI or not?
- Cycle 5?
- European Development Studies
 - Next call will be in 2016 (deadline ~September)

Summary

- ALMA is already providing transformational (sub-)mm science
- Lots still to do, especially to improve efficiency, but also to add new functionality
- Good prospects for VLBI including ALMA from Cycle 4
- Think about multifrequency enhancements.